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1. INTRODUCTION

Let N = {I, 2, ... } be the set of natural numbers. For IE C[a, b] (real
valued and continuous functions on the compact interval [a, b]), let
IIIII := max{ I/(t)l: a:::; t:::; b} denote the Cebysev norm of f Furthermore,
let IIn be the set of real algebraic polynomials of degree :::; n. By c, C we
denote positive absolute constants independent of n, f, and x E [a, b]. The
constants c and c may be different at different occurrences even on the
same line.

For IE C[a, b], the second order modulus of continuity wz(f, 15) is
defined by (O:::;J:::;~(b-a))

wz(f, 15) :=sup{l/(x-h)-2/(x)+ l(x+h)l, x, X±hE [a, b], O:::;h:::;J}.

In [10, 11] Dzjadyk and Freud proved the following

THEOREM A. For IE C[ -1, 1J, n:?: 2, there exists a Pn(f, . ) E IIn such
that

I/(x) - Pn(f, x)1 :::; c· wz(f,~·n~ 1+ n- Z
),

77

Ixj:::;1. (1.1)
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Defining Lln(x) :=max{~.n-l, n- 2}, we have

Lln(x)::::; J1 - x 2. n- J + n~2::::; 2· Lln(x). (1.2 )

From (1.1) we arrive at

II(x) - Pn(f, x)1 ::::; c· w 2(f, LI,.(x)),

In [17 J Gopengauz proved

Ixl ::::; 1. (1.3)

THEOREM B. For IE C[ -1, 1J, n ~ 2, there exists a Pn(f, .) E Iln such
that

II(x) - Pn(f, x)1 ::::; C . W2(f, J 1- x 2 . n ~ 1), Ixl::::; 1. (1.4 )

This result was also obtained by DeVore [8, Theorem 3].
We note, for the sake of completeness, that in a series of recent papers,

a problem posed by Lorentz and Steckin, namely that of replacing Lln(x)

by the quantity~ . n ~ J in the more general inequalities of the type

r,s=O, 1,2, ... , IEe[-l, 1J, O::::;k::::;r, was completely solved. It was
shown, among other things, that Gopengauz' original conjecture, namely,
the possibility of such a replacement, for 0::::; k::::; r, is not true in general.
See [6, 16, 24 J for details.

The aim of the present note is to show that the Gopengauz-type estimate
(1.4) involving the second order modulus of smoothness W 2 can be
obtained using rather simple modifications of certain sequences of positive
linear operators Gm(n)' These will be introduced in the next paragraph.

In [18, 22 J Picugov and Lehnhoff constructed the following operators
Gm(n)'

Let IE C[ -1, 1J, Km(n)(v):= ~+ L:Z'~nl Pk,m(n) cos kv. Then for n EN

Gm(n)(f, x):= n~Jr I(cos(arccos x+ u))Km(n)(u) du. (1.5)
-n

Here the kernel Km(n) is a trigonometric polynomial of degree m(n) with
(i) Km(n) positive and even, and (ii) f"-n Km(n)(v) dv = n. This implies that
Gm(n)(f, . ) is an algebraic polynomial of degree m(n).

For sEN Matsuoka [21J (see also [7, p. 79ff.J) investigated the
following special kernels,

(
Sin(nv/2 ))2\

K",_Jv)=cn,s sin(v/2) ,
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where cn.s is chosen such that n - I Jrr rr Ksn J v) dv = 1. From (1.5) one
obtains corresponding operators Om s being based upon the kernels

K.W1-So

Picugov and Lehnhoff published estimates involving the least concave
majorant of the first order modulus WI and the first order modulus itself.
For instance, it was shown by Lehnhoff [18] that one has

IG 3n 3Cf, x) -f(x)1 ~ 4· (wlf, jt="? n I) + wlf, Ixl .n -2))

for all f E C[ - 1, 1] and Ixl ~ 1.
The investigation of both authors mentioned was supplemented and

extended in several papers by Lehnhoff [19] and the present authors (see
[2-5, 13-15]).

An important tool used in all papers mentioned is the Boolean sum of
the operators Gmin) and certain interpolation operators L. In particular, it
was conjectured in the second author's paper [14] that for a certain
modification Gjn-3 (to be defined below) of the operators G3n 3 the
following Gopengauz-type inequality holds:

Conjecture. Let n;;::: 2 and f E C[ -1, 1]. Then

Ixl ~ 1.

In the present paper we shall show that this is indeed the case, and that
certain simpler operators Gi,,-3 have the same property. Our results are
obtained via the use of more general assertions which may be of interest in
themselves. We establish a general theorem (Theorem 5.2), prove Gonska's
conjecture, and we show that his conjecture also holds for the more general
operators 0,: s= G}n- s' s;;::: 3 (Theorem 5.5).

2. NOTES ON THE BOOLEAN SUM METHOD

An aspect returning in all papers just mentioned is the use of the
so-called Boolean sum A EB B of certain linear operators A and B. This
mapping is defined by the equality A EB B := A + B - A 0 B (subject to
suitable domains and ranges of A and B). To be more specific, let Lf
denote the linear function interpolating f at - 1 and 1, i.e.,

L(f, x) = ~ f( l)(x + 1) + ~ f( - I )( I - x).

In his paper [19] Lehnhoff used operators of the type G';;(n) :=LEBGm(n) to
arrive at a Teljakowskii-type inequality.



80 CAO AND GONSKA

Operators of the symmetric form G:(n):= Gm(n) EB L were considered
from a more general point of view in [12]. See [5] for further results and
additional references.

The natural "successors" G~(n):=L$Gm(n)EBL (note that "$" is an
associative, but in general a non-commutative operation) were investigated
in [14]. It turns out in Corollary 2.2 below, however, that in the special
situation under consideration here, we have G~(n) = G ;:;(n)'

The consideration of the three types of Boolean sum operators just listed
(which were implicitly also used in DeVore's paper [8]) is motivated by
the following variant of a theorem by Barnhill and Gregory [1].

THEOREM 2.1. Let P and Q be linear operators mapping a function space
G (consisting offunctions on the domain D) into a subspace H of G. Let Go
be a subset of G, and let !l' = {l} be a set of linear functionals defined on H.

(i) Let I(Pf) = l(f)for all IE !l' and all fE H. Then 1((P$ Q)f) = If
for all IE!l' and all f E H.

(ii) Let Qf=f for all fEGo. Then (P$Q)f=f for all fEGo·

(iii) Let f and Qf be in the set of all functions g such that Pg = g.
Then (P$ Q)f= f

In other words, P$ Q inherits certain "interpolation properties" of P, the
function precision of Q, and also some function precision properties of P.

Proof (i) Let IE!l' and f E H. Then

I((P$ Q)f) = I(Pf) + I(Qf) -/(PQf)

= l(f) + I(Qf) -1(Qf) since Qf E H

= I(f).

(ii) For fE Go there holds

(P $ Q) f = Pf + Qf - PQf = Pf + f - Pf = f.

(iii) From the assumption it follows that for the function f in
question there holds P(Qf) = Qf. Hence

(P $ Q) f = Pf + Qf - PQf = f + Qf - Qf = f I

For the operators at hand, namely Land Gm(n), we have the following

COROLLARY 2.2. The operator G;:;(n) = L $ Gm(n) has the following
properties:
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(i) G:'(n)(f; ± 1) = f( ± 1) for all f E C[ -1, 1].

(ii) G:'(nJ=f for all fEll t •

(iii) G:'(n)=G~(n) (=LEBGm(n)EBL).
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Proof (i) Follows from the interpolation properties of L at -1
and + 1.

(ii) For fE III we have Lf = f and Gm(nJE lll. The latter statement
is a consequence of the equalities Gm(n)(I, x) = 1 and Gm(n)(t, x) = Pt.m(n)· X

(see [14]). Theorem 2.1 (iii) then implies G:'(n)f = f
(iii) For any fE C[ -1,1] there holds

G~(nJ= (L EB Gm(n) + L - (L EB Gm(n») 0 L)(f)

= (L EB Gm(n))(f) + L(f) - (L EB Gm(n))(Lf).

Since Lf is a linear function we have by (ii) that G:'(n)(Lf) =
(LEB Gm(n))(Lf) = Lf, implying G~(nJ=G:'(nJ I

3. A JACKSON-TYPE INEQUALITY FOR CERTAIN BOOLEAN SUM OPERATORS

Let A n be a sequence of positive linear operators mapping C[ -1, 1]
into C[ -1, 1]. We consider the sequence of operators A;; := L EB An where
L is given as above. Hence for f E C[ -1, 1] and Ixl :( 1 we have

A;;(f, x) = An(f, x) + {1. (x + 1)· [f(1) - An(f, 1)]

+ i· (l - x)· [f( -1) - An(f, -I)]}.

In the following C 2 [a, b] denotes the space of twice continuously differen
tiable functions.

LEMMA 3.1. Let n EN and let An: C[ -1, 1] - C[ -1, 1] be a sequence
of positive linear operators, satisfying the following conditions:

(i) A n(l,x)=I,

(ii) A n(t,x)=Anx,I-An=0(n- 2
),

(iii) An((t - xf, x) = 0((1- x 2
). n- 2 + n- 4

),

where 0 is the Landau symbol. Then for hE C 2
[ -1, 1] and Ixl:( 1 the

following inequality holds:
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Proof If Ixl ~ 1 and hE C 2
[ -I, 1], using Taylor's formula we know

that there exists a ~ between t and x such that

h(t) - h(x) - h'(x)(t - x) = ~(t - X)2 h"(o,

where, if x= 1, then h'(I) :=h'_(l), and if x= -I, then h'( -1) :=h'+( -I).
This gives the estimate

Ih(t)-h(x)-h'(x)(t-x)1 ~~(t-x)21Ih"ll.

Since An(l, x) = 1 and An is a sequence of positive operators, we have

and

An(t - x, x) = An(t, x) - x· An(l, x) = (An - 1)x; (3.2)

hence

IAn(h, x) - h(x) - h'(x)(An - 1)xl ~ ~An((t - X)2, x)· Ilh"ll. (3.3)

Letting x = 1 in (3.3) we have

IAn(h, I) - h(l) - h'( 1)(An- 1)1 ~ ~An((t - 1)2, I) ·IWII.

From condition (iii) we know that A n((t-I)2, 1)=O(n- 4
), hence

I~(x+ 1)[AAh, I)-h(l)]-~(x+l)h'(1)Un-1)1

~ !(x + I) A n( (t - 1)2, I) . II hI' II

~ ~An((t - 1)2, 1) '1Ih"ll

=O(n- 4 )·\\h"\\. (3.4)

In (3.3) letting x= -I we have

IAn(h, -1 )-h( -1) -h'( -1)(1- An)1 ~ ~An((t + 1)2, -1) ·1\h"lI.

Because of An((t+ If, -1)=O(n- 4
), we arrive at

I~ (1 - x) [ An(h, - 1) - h( - 1)] - ~ (1 - x) h' ( - 1)(1 - An)I

~ !(1- x) An((t + 1)2, -1) '1Ih"ll

~ ~An((t + 1)2, -1)· Ilh"ll

= O(n- 4
) ·llh"ll. (3.5)
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Now we define

e,,(x) := Kx + 1)[A,,(h, 1) - h(l)] + ~(l- x)[A,,(h, -1) - h( -1 )],

d,,(x) := ~(x + 1) h'(l )(A" - 1) + ~(l - x) h'( -1)(1 - A,,).

From (3.4) and (3.5) it follows that
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(3.6 )

and from the definition of A;; (h, x) we get

and

A,7 (h, x) - h(x) = A,,(h, x) - h(x) - h'(x) xU" - 1)

+ h'(x) x(),,, - 1) - e,,(x) +d,,(x) - d,,(x)

= [A,,(h, x)-h(x)-h'(x)x(A,,-I)]

- [e,,(x) - d,,(x)] + [h'(x) X(A" -1) - d,,(x)].

From (3.3), (3.6), and condition (iii) we obtain

IA;; (h, x) - h(x)1 ~ jA,,(h, x) - h(x) - h'(x) x(),,, - 1)1

+ le,,(x) - d,,(x)1 + Ih'(x) x(),,, - 1) - d,,(x)1

~ ~A,,((t-X)2, x) ·llh"ll + O(n- 4
) ·llh"ll

+ Ih'(x) x(A" - 1) - d,,(x)1

=O((l-x2 )n- 2 +n- 4 )·llh"ll +I,,(x), (3.7)

where

I,,(x) := Ih'(x) X(A" -1) - d,,(x)1

= Ih'(x) X(A" - 1) - ~(x + 1) h'(l HA" - 1) + ~(l- x) h'( -1 HA" - 1)1

= po" - 11 . Ih'(x)x - ~(x + 1) h'( 1) + !(1 - x) h'( -1 )1.

Since x = !(x + 1) - ~(l- x), we can write

I,,(x) = 11 - A"I ·1 Hx + 1)[h'(x) - h'(l)] +!(l - x)[h'( -1) - h'(x)] I

~ 11 - A"I . g(x + 1) Ih'(x) - h'(1)1 + ~(l - x) Ih'( -1) - h'(x)1 }.
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Using the mean value theorem we have

In(x)~ II-Ani· {~(x+ I)lh"(8)1·II-xl + ~(1-x)lh"(l1)I'lx+ II},

where -1 < 8 < I and - 1 < 11 < 1, hence

In(x)~ II-Ani· {~(1-X2)+~(1-X2)} ·llh"ll

= 11- Ani· (1- x 2
) ·llh"ll.

From condition (ii) we have

(3.8)

and from (3.7) and (3.8) we derive that

IA,7(h,x)-h(x)1

~ {c .«(1 - x 2) . n - 2+ n -4) + c. (1 - x 2) .n -2} . Ilh" II

~c·«(1-x2).n-2+n-4)·llh"ll. I

Remark 3.2. The inequality of Lemma 3.1 implies that A'; = L EB An
reproduces linear functions. This follows also from Theorem 2.1 (iii).

4. FURTHER AUXILIARY RESULTS

LEMMA 4.1. Let m(n) E Nand c . n ~ m(n) ~ c.n. Furthermore, let
Pm(n) E IIm(n) and let w be a modulus of continuity (i.e., w(h) ~°for h ~ 0,
w is positive and increasing, and w is subadditive). If

Ixl ~ 1,

then

Ixl ~ 1.

Proof The proof is similar to that of Theorem 3 in [20, p. 71].

LEMMA 4.2. If n ~ 2 and hE C2[ -1, 1], then there exists a polynomial
An(h, . ) E JIn such that for Ixl ~ lone has

(i) \h(x)-An(h,x)l~c·A~(x)·lIh"lI,and

(ii) Ih'(x) - A~(h, x)1 ~ c . An(x) . W'II, where A~(h, x) := (d/dx)
An(h, x).

Proof See Trigub [23, Lemma 1].
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LEMMA 4.3. Let n ~ 2, m(n) EN, and c· n ~ m(n) ~ c' n. Let An:
C[ - 1, 1] ----+ IIm(n) be a sequence of positive linear algebraic polynomial
operators, satisfying conditions (i)-(iii) of Lemma 3.1. If hE C 2

[ -1, 1],
then

Ixl :::;; 1.

Proof Note that LI~(x) = max{(l- x 2 )n- 2
, n- 4

}. Writing Wn(h, x) :=

A,;(h, x), we get from Lemma 3.1 that

IWn(h, x) - h(x)1 ~ c· ((1- x 2
). n- 2 +n- 4

) '1Ih"ll (4.1)

:::;; c . LI ~(x) . II h" II. (4.2)

Since n ~ 2, with An(h, . ) as in Lemma 4.2, we have for Ixl :::;; 1

Ih(x) - An(h, x)1 :::;; c . LI ~(x) . Ilh" II,

and

Ih'(x) - A~(h, x)1 :::;; c· Lln(x)· IIh"ll.

Thus

(4.3 )

(4.4 )

IWn(h, x) - An(h, x)1 :::;; IWn(h, x) - h(x)1 + Ih(x) - An(h, x)1

:::;; c· LI~(x) ·llh"ll. (4.5)

The degree of Wn(h,·)-An(h,·) is m'(n)=max{m(n),n}. Since c·n~

m(n)~c·n, the same is true for m'(n). Applying Lemma 4.1 (with
w(t) =c . Ilh" II . t, where c is the constant from (4.5)) we arrive at

IW~(h, x)-A~(h, x)1 ~c .Lln(x) ·llh"ll.

From (4.6) and (4.4) it follows that

(4.6 )

IW~(h, x) - h'(x)1 ~ c· Lln(x) ·llh"ll,

which yields the claim of Lemma 4.3. I

Ixl ~ 1,

5. GOPENGAUZ-TYPE INEQUALITIES

This section contains the main result of our paper (Theorem 5.2). Its
proof is obtained by the smoothing method which is described in the
following
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LEMMA 5.1. Let H,,: C[ -1,1] ...... C[ -1,1] be a sequence ()[ linear
operators, satisfying the following conditions:

(i) IIHnfl1 ~ c·llfll for all fE C[ -1,1].

(ii) There is a function G,,: [ - 1, 1] ...... [0, 1] such that for all
g E C l

[ -1, 1] there holds

IH,,(g, x) - g(x)1 ~ C, G;'(x) '1Ig"ll,

Then we have for all f E C[ -1, 1]

IH,,(f, x) - f(x)1 ~ c .wl(f, G,,(x)),

Ixl ~ I.

Ixl ~ I.

Proof Lemma 5.1 is obtained by using the K-functional method (see,
e.g., DeVore [9]). I

THEOREM 5.2. Let n ~ 2, m(n) EN, and c· n ~ m(n) ~ c.n. Furthermore,
let A,,: C[ -1, 1] ...... nm(n) be a sequence of positive linear operators, satisfy
ing conditions (i)-( iii) of Lemma 3.1. Then we have for all f E C[ - 1, 1] and
all Ixl ~ 1 that

IA,; (f, x) - f(x)1 ~ c· wl(f, jt=7. n -1).

Proof We have to show that for the operators A: the conditions (i)

and (ii) of Lemma 5.1 hold with G,,(x)=jt=7 ·n- l .
We first show that (ii) is satisfied. To this end we define again

Wn(g, x) := A: (g, x). For any gE C l [ -1, 1] we know from (4.2) that

Ig(x)- Wn(g,x)1 ~c.A;'(x)·llg"ll. (5.1 )

Inequality (5.1) can be improved near the endpoints by using the fact that
W,,(g, ± 1) = g( ± 1). For example, in the case 0 ~ x ~ 1 we arrive at

Ig(x)- W,,(g, x)1 ~ Ix-ll·lg'(O- W~(g, 01

~c·lx-ll·A"lO·lIg"ll

~c·(I-xl)·An(x)·llg"ll, (5.2)

where in the first inequality we used the mean value theorem with
x < ~ < 1, in the second inequality we employed Lemma 4.3, and in the
third inequality we made use of the fact that 1 - x ~ 1 - Xl for 0 ~ x ~ 1
and An(O~An(x) (since O~x<O. The same inequality as the one in (5.2)
holds if -1 ~ x ~ O. Hence we have

Ig(x) - W,,(g, x)1 ~ c· (l - x 2
). A,,(x)· II gUll, Ixl ~ 1. (5.3 )
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Using a standard argument, (5.1) and (5.3) imply

Ig(x) - A,7(g, x)1 ~ c· (1 - x 2). n- 2 '1Ig"ll, Ixl ~ 1.
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(5.4 )

Ixl ~ 1.

To verify condition (i) of Lemma 5.1, we note that the positivity of An
implies for all fE C[ -1,1 J and Ixl ~ 1 the inequality

lAne!' x)1 ~ IA n(1, x)1 ·llfll = Il.fII·
Thus

IA,7 (f, x)1 ~ IAnU; x)1 + ~C' + 1). [If(1)1 + IAnCf, 1)1 J
+~(1-x)'[lf(-I)I+IAn(f, -1)IJ

~ Ilfll + (x + 1) ·llfll + (1 - x) ·llfll = 311fll, (5.5)

and from (5.5) and (5.4), using Lemma 5.1, we obtain Theorem 5.2. I
In the following we apply Theorem 5.2 to the operators Gm(n)'

LEMMA 5.3. For Ixl ~ 1 the following equality holds

Gm(n)( (t - X)2, x) = ~(1 - P2.m(n))( 1- x 2)+ {3/2 - 2p l,m(n) + ~P2.m(n)} x 2.

Proof See Lehnhoff [18].

THEOREM 5.4. Let n ~ 2 and c· n ~ m(n) ~ c.n. Furthermore, let
Km(n)(v) ~ 0 and

(i) 1- PJ.m(n) = O(n- 2
),

(ii) ~-2Pl,m(n)+~P2,m(n)=O(n-4).

Then for all f E C[ - 1, 1J

IG,;'(n)(f, x) - f(x)1 ~ c· W2(f, Jl=? n- 1
),

Proof In [14J it was proved that

and

Since Km(n)(v)~O we have (see Cao and Gonska [5J)

0< I-P2,m(n)~4·(I-Pl,m(n))=O(n-2),

From condition (ii) and Lemma 5.3 we obtain

which, using Theorem 5.2, yields the claim of Theorem 5.4, I
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THEOREM 5.5. Let n ~ 2 and s ~ 3. Then for f E C[ -1, 1] there holds

IGs~-\(f, x) - f(x)1 ~ c· w 2(f, j1"=7. n- 1
), Ixl ~ 1.

Proof First observe that n ~ sn - s ~ sn (n ~ 2 and s ~ 2) and that
Ksn_s(v) ~ O. It was proved in [7] that

1- Pl,sn-s = O(n- 2
),

We also have (see Cao and Gonska [5])

s~2.

s~3.

Using Theorem 5.4 we obtain Theorem 5.5. I

Remark 5.6. In view of Corollary 2.2(iii) all estimates given above also
hold for the corresponding operators G~(n)' Thus Theorem 5.5 proves the
conjecture of Cao and Gonska [5J (containing the second author's conjec
ture from [14J for the special case s = 3).
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