Approximation by Boolean Sums of Positive Linear Operators. II. Gopengauz-Type Estimates

Jia-Ding Cao
Department of Mathematics, Fudan University, Shanghai, People's Republic of China

AND

Heinz H. Gonska
Department of Mathematics and Computer Science, Drexel University,
Philadelphia, Pennsylvania 19104, U.S.A.; and
Department of Mathematics, University of Duisburg, D-4100 Duisburg 1, West Germany
Communicated by Paul Nevai

Received February 9, 1987; revised July 10, 1987

1. Introduction

Let $\mathbb{N}=\{1,2, \ldots\}$ be the set of natural numbers. For $f \in C[a, b]$ (realvalued and continuous functions on the compact interval $[a, b]$), let $\|f\|:=\max \{|f(t)|: a \leqslant t \leqslant b\}$ denote the Čebyšev norm of f. Furthermore, let Π_{n} be the set of real algebraic polynomials of degree $\leqslant n$. By c, \tilde{c} we denote positive absolute constants independent of n, f, and $x \in[a, b]$. The constants c and \tilde{c} may be different at different occurrences even on the same line.

For $f \in C[a, b]$, the second order modulus of continuity $\omega_{2}(f, \delta)$ is defined by $\left(0 \leqslant \delta \leqslant \frac{1}{2}(b-a)\right)$
$\omega_{2}(f, \delta):=\sup \{|f(x-h)-2 f(x)+f(x+h)|, x, x \pm h \in[a, b], 0 \leqslant h \leqslant \delta\}$.
In [10, 11] Dzjadyk and Freud proved the following

Theorem A. For $f \in C[-1,1], n \geqslant 2$, there exists a $p_{n}(f, \cdot) \in \Pi_{n}$ such that

$$
\begin{equation*}
\left|f(x)-p_{n}(f, x)\right| \leqslant c \cdot \omega_{2}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}+n^{-2}\right), \quad|x| \leqslant 1 \tag{1.1}
\end{equation*}
$$

Defining $\Delta_{n}(x):=\max \left\{\sqrt{1-x^{2}} \cdot n^{-1}, n^{-2}\right\}$, we have

$$
\begin{equation*}
A_{n}(x) \leqslant \sqrt{1-x^{2}} \cdot n^{-1}+n^{-2} \leqslant 2 \cdot A_{n}(x) \tag{1.2}
\end{equation*}
$$

From (1.1) we arrive at

$$
\begin{equation*}
\left|f(x)-p_{n}(f, x)\right| \leqslant c \cdot \omega_{2}\left(f, \Delta_{n}(x)\right), \quad|x| \leqslant 1 . \tag{1.3}
\end{equation*}
$$

In [17] Gopengauz proved
Theorem B. For $f \in C[-1,1], n \geqslant 2$, there exists a $p_{n}(f, \cdot) \in \Pi_{n}$ such that

$$
\begin{equation*}
\left|f(x)-p_{n}(f, x)\right| \leqslant c \cdot \omega_{2}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}\right), \quad|x| \leqslant 1 \tag{1.4}
\end{equation*}
$$

This result was also obtained by DeVore [8, Theorem 3].
We note, for the sake of completeness, that in a series of recent papers, a problem posed by Lorentz and Stečkin, namely that of replacing $\Delta_{n}(x)$ by the quantity $\sqrt{1-x^{2}} \cdot n^{-1}$ in the more general inequalities of the type

$$
\left|f^{(k)}(x)-p_{n}^{(k)}(f, x)\right| \leqslant c \cdot \Delta_{n}(x)^{r-k} \cdot \omega_{s}\left(f^{(r)}, \Delta_{n}(x)\right),
$$

$r, s=0,1,2, \ldots, f \in C^{r}[-1,1], 0 \leqslant k \leqslant r$, was completely solved. It was shown, among other things, that Gopengauz' original conjecture, namely, the possibility of such a replacement, for $0 \leqslant k \leqslant r$, is not true in general. See $[6,16,24]$ for details.

The aim of the present note is to show that the Gopengauz-type estimate (1.4) involving the second order modulus of smoothness ω_{2} can be obtained using rather simple modifications of certain sequences of positive linear operators $G_{m(n)}$. These will be introduced in the next paragraph.

In $[18,22]$ Pičugov and Lehnhoff constructed the following operators $G_{m(n)}$.

Let $f \in C[-1,1], K_{m(n)}(v):=\frac{1}{2}+\sum_{k=1}^{m(n)} \rho_{k, m(n)} \cos k v$. Then for $n \in \mathbb{N}$

$$
\begin{equation*}
G_{m(n)}(f, x):=\pi^{-1} \int_{-\pi}^{\pi} f(\cos (\arccos x+v)) K_{m(n)}(v) d v \tag{1.5}
\end{equation*}
$$

Here the kernel $K_{m(n)}$ is a trigonometric polynomial of degree $m(n)$ with (i) $K_{m(n)}$ positive and even, and (ii) $\int_{-\pi}^{\pi} K_{m(n)}(v) d v=\pi$. This implies that $G_{m(n)}(f, \cdot)$ is an algebraic polynomial of degree $m(n)$.

For $s \in \mathbb{N}$ Matsuoka [21] (see also [7, p. 79 ff .]) investigated the following special kernels,

$$
K_{s n-s}(v)=c_{n, s}\left(\frac{\sin (n v / 2)}{\sin (v / 2)}\right)^{2 s}
$$

where $c_{n, s}$ is chosen such that $\pi^{-1} \int_{\cdots \pi}^{\pi} K_{s n-s}(v) d v=1$. From (1.5) one obtains corresponding operators $G_{s n,}$, being based upon the kernels $K_{s n-s}$.

Pičugov and Lehnhoff published estimates involving the least concave majorant of the first order modulus ω_{1} and the first order modulus itself. For instance, it was shown by Lehnhoff [18] that one has

$$
\left|G_{3 n-3}(f, x)-f(x)\right| \leqslant 4 \cdot\left(\omega_{1}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}\right)+\omega_{1}\left(f,|x| \cdot n^{-2}\right)\right)
$$

for all $f \in C[-1,1]$ and $|x| \leqslant 1$.
The investigation of both authors mentioned was supplemented and extended in several papers by Lehnhoff [19] and the present authors (see [2-5, 13-15]).

An important tool used in all papers mentioned is the Boolean sum of the operators $G_{m(n)}$ and certain interpolation operators L. In particular, it was conjectured in the second author's paper [14] that for a certain modification $G_{3 n-3}^{1}$ (to be defined below) of the operators $G_{3 n-3}$ the following Gopengauz-type inequality holds:

Conjecture. Let $n \geqslant 2$ and $f \in C[-1,1]$. Then

$$
\left|G_{3 n-3}^{1}(f, x)-f(x)\right| \leqslant c \cdot \omega_{2}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}\right), \quad|x| \leqslant 1
$$

In the present paper we shall show that this is indeed the case, and that certain simpler operators $G_{3 n-3}^{+}$have the same property. Our results are obtained via the use of more general assertions which may be of interest in themselves. We establish a general theorem (Theorem 5.2), prove Gonska's conjecture, and we show that his conjecture also holds for the more general operators $G_{s n-s}^{+}=G_{s n-s}^{1}, s \geqslant 3$ (Theorem 5.5).

2. Notes on the Boolean Sum Method

An aspect returning in all papers just mentioned is the use of the so-called Boolean sum $A \oplus B$ of certain linear operators A and B. This mapping is defined by the equality $A \oplus B:=A+B-A \circ B$ (subject to suitable domains and ranges of A and B). To be more specific, let $L f$ denote the linear function interpolating f at -1 and 1, i.e.,

$$
L(f, x)=\frac{1}{2} f(1)(x+1)+\frac{1}{2} f(-1)(1-x)
$$

In his paper [19] Lehnhoff used operators of the type $G_{m(n)}^{+}:=L \oplus G_{m(n)}$ to arrive at a Teljakowskiĭ-type inequality.

Operators of the symmetric form $G_{m(n)}^{*}:=G_{m(n)} \oplus L$ were considered from a more general point of view in [12]. See [5] for further results and additional references.

The natural "successors" $G_{m(n)}^{1}:=L \oplus G_{m(n)} \oplus L$ (note that " \oplus " is an associative, but in general a non-commutative operation) were investigated in [14]. It turns out in Corollary 2.2 below, however, that in the special situation under consideration here, we have $G_{m(n)}^{1}=G_{m(n)}^{+}$.

The consideration of the three types of Boolean sum operators just listed (which were implicitly also used in DeVore's paper [8]) is motivated by the following variant of a theorem by Barnhill and Gregory [1].

Theorem 2.1. Let P and Q be linear operators mapping a function space G (consisting of functions on the domain D) into a subspace H of G. Let G_{0} be a subset of G, and let $\mathscr{L}=\{l\}$ be a set of linear functionals defined on H.
(i) Let $l(P f)=l(f)$ for all $l \in \mathscr{L}$ and all $f \in H$. Then $l((P \oplus Q) f)=l f$ for all $l \in \mathscr{L}$ and all $f \in H$.
(ii) Let $Q f=f$ for all $f \in G_{0}$. Then $(P \oplus Q) f=f$ for all $f \in G_{0}$.
(iii) Let f and $Q f$ be in the set of all functions g such that $P g=g$. Then $(P \oplus Q) f=f$.
In other words, $P \oplus Q$ inherits certain "interpolation properties" of P, the function precision of Q, and also some function precision properties of P.

Proof. (i) Let $l \in \mathscr{L}$ and $f \in H$. Then

$$
\begin{aligned}
l((P \oplus Q) f) & =l(P f)+l(Q f)-l(P Q f) \\
& =l(f)+l(Q f)-l(Q f) \quad \text { since } \quad Q f \in H \\
& =l(f) .
\end{aligned}
$$

(ii) For $f \in G_{0}$ there holds

$$
(P \oplus Q) f=P f+Q f-P Q f=P f+f-P f=f .
$$

(iii) From the assumption it follows that for the function f in question there holds $P(Q f)=Q f$. Hence

$$
(P \oplus Q) f=P f+Q f-P Q f=f+Q f-Q f=f
$$

For the operators at hand, namely L and $G_{m(n)}$, we have the following
Corollary 2.2. The operator $G_{m(n)}^{+}=L \oplus G_{m(n)}$ has the following properties:
(i) $G_{m(n)}^{+}(f ; \pm 1)=f(\pm 1)$ for all $f \in C[-1,1]$.
(ii) $G_{m(n)}^{+} f=f$ for all $f \in \Pi_{1}$.
(iii) $G_{m(n)}^{+}=G_{m(n)}^{1}\left(=L \oplus G_{m(n)} \oplus L\right)$.

Proof. (i) Follows from the interpolation properties of L at -1 and +1 .
(ii) For $f \in \Pi_{1}$ we have $L f=f$ and $G_{m(n)} f \in \Pi_{1}$. The latter statement is a consequence of the equalities $G_{m(n)}(1, x)=1$ and $G_{m(n)}(t, x)=\rho_{1, m(n)} \cdot x$ (see [14]). Theorem 2.1 (iii) then implies $G_{m(n)}^{+} f=f$.
(iii) For any $f \in C[-1,1]$ there holds

$$
\begin{aligned}
G_{m(n)}^{1} f & =\left(L \oplus G_{m(n)}+L-\left(L \oplus G_{m(n)}\right) \circ L\right)(f) \\
& =\left(L \oplus G_{m(n)}\right)(f)+L(f)-\left(L \oplus G_{m(n)}\right)(L f)
\end{aligned}
$$

Since $L f$ is a linear function we have by (ii) that $G_{m(n)}^{+}(L f)=$ $\left(L \oplus G_{m(n)}\right)(L f)=L f$, implying $G_{m(n)}^{1} f=G_{m(n)}^{+} f$.

3. A Jackson-Type Inequality for certain Boolean Sum Operators

Let A_{n} be a sequence of positive linear operators mapping $C[-1,1]$ into $C[-1,1]$. We consider the sequence of operators $A_{n}^{+}:=L \oplus A_{n}$ where L is given as above. Hence for $f \in C[-1,1]$ and $|x| \leqslant 1$ we have

$$
\begin{aligned}
A_{n}^{+}(f, x)= & A_{n}(f, x)+\left\{\frac{1}{2} \cdot(x+1) \cdot\left[f(1)-A_{n}(f, 1)\right]\right. \\
& \left.+\frac{1}{2} \cdot(1-x) \cdot\left[f(-1)-A_{n}(f,-1)\right]\right\} .
\end{aligned}
$$

In the following $C^{2}[a, b]$ denotes the space of twice continuously differentiable functions.

Lemma 3.1. Let $n \in \mathbb{N}$ and let $A_{n}: C[-1,1] \rightarrow C[-1,1]$ be a sequence of positive linear operators, satisfying the following conditions:
(i) $A_{n}(1, x)=1$,
(ii) $A_{n}(t, x)=\lambda_{n} x, 1-\lambda_{n}=O\left(n^{-2}\right)$,
(iii) $A_{n}\left((t-x)^{2}, x\right)=O\left(\left(1-x^{2}\right) \cdot n^{-2}+n^{-4}\right)$,
where O is the Landau symbol. Then for $h \in C^{2}[-1,1]$ and $|x| \leqslant 1$ the following inequality holds:

$$
\left|A_{n}^{+}(h, x)-h(x)\right| \leqslant c \cdot\left(\left(1-x^{2}\right) \cdot n^{-2}+n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\| .
$$

Proof. If $|x| \leqslant 1$ and $h \in C^{2}[-1,1]$, using Taylor's formula we know that there exists a ξ between t and x such that

$$
h(t)-h(x)-h^{\prime}(x)(t-x)=\frac{1}{2}(t-x)^{2} h^{\prime \prime}(\xi)
$$

where, if $x=1$, then $h^{\prime}(1):=h_{-}^{\prime}(1)$, and if $x=-1$, then $h^{\prime}(-1):=h_{+}^{\prime}(-1)$. This gives the estimate

$$
\left|h(t)-h(x)-h^{\prime}(x)(t-x)\right| \leqslant \frac{1}{2}(t-x)^{2}\left\|h^{\prime \prime}\right\| .
$$

Since $A_{n}(1, x)=1$ and A_{n} is a sequence of positive operators, we have

$$
\begin{equation*}
\left|A_{n}(h, x)-h(x)-h^{\prime}(x) \cdot A_{n}(t-x, x)\right| \leqslant \frac{1}{2} A_{n}\left((t-x)^{2}, x\right) \cdot\left\|h^{\prime \prime}\right\| \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}(t-x, x)=A_{n}(t, x)-x \cdot A_{n}(1, x)=\left(\lambda_{n}-1\right) x \tag{3.2}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left|A_{n}(h, x)-h(x)-h^{\prime}(x)\left(\lambda_{n}-1\right) x\right| \leqslant \frac{1}{2} A_{n}\left((t-x)^{2}, x\right) \cdot\left\|h^{\prime \prime}\right\| \tag{3.3}
\end{equation*}
$$

Letting $x=1$ in (3.3) we have

$$
\left|A_{n}(h, 1)-h(1)-h^{\prime}(1)\left(\lambda_{n}-1\right)\right| \leqslant \frac{1}{2} A_{n}\left((t-1)^{2}, 1\right) \cdot\left\|h^{\prime \prime}\right\|
$$

From condition (iii) we know that $A_{n}\left((t-1)^{2}, 1\right)=O\left(n^{-4}\right)$, hence

$$
\begin{align*}
\left\lvert\, \frac{1}{2}(x\right. & +1) \left.\left[A_{n}(h, 1)-h(1)\right]-\frac{1}{2}(x+1) h^{\prime}(1)\left(\lambda_{n}-1\right) \right\rvert\, \\
& \leqslant \frac{1}{4}(x+1) A_{n}\left((t-1)^{2}, 1\right) \cdot\left\|h^{\prime \prime}\right\| \\
& \leqslant \frac{1}{2} A_{n}\left((t-1)^{2}, 1\right) \cdot\left\|h^{\prime \prime}\right\| \\
& =O\left(n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\| . \tag{3.4}
\end{align*}
$$

In (3.3) letting $x=-1$ we have

$$
\left|A_{n}(h,-1)-h(-1)-h^{\prime}(-1)\left(1-\lambda_{n}\right)\right| \leqslant \frac{1}{2} A_{n}\left((t+1)^{2},-1\right) \cdot\left\|h^{\prime \prime}\right\|
$$

Because of $A_{n}\left((t+1)^{2},-1\right)=O\left(n^{-4}\right)$, we arrive at

$$
\begin{align*}
\left\lvert\, \frac{1}{2}(1\right. & -x) \left.\left[A_{n}(h,-1)-h(-1)\right]-\frac{1}{2}(1-x) h^{\prime}(-1)\left(1-\lambda_{n}\right) \right\rvert\, \\
& \leqslant \frac{1}{4}(1-x) A_{n}\left((t+1)^{2},-1\right) \cdot\left\|h^{\prime \prime}\right\| \\
& \leqslant \frac{1}{2} A_{n}\left((t+1)^{2},-1\right) \cdot\left\|h^{\prime \prime}\right\| \\
& =O\left(n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\| . \tag{3.5}
\end{align*}
$$

Now we define

$$
\begin{aligned}
& e_{n}(x):=\frac{1}{2}(x+1)\left[A_{n}(h, 1)-h(1)\right]+\frac{1}{2}(1-x)\left[A_{n}(h,-1)-h(-1)\right] \\
& d_{n}(x):=\frac{1}{2}(x+1) h^{\prime}(1)\left(\lambda_{n}-1\right)+\frac{1}{2}(1-x) h^{\prime}(-1)\left(1-\lambda_{n}\right)
\end{aligned}
$$

From (3.4) and (3.5) it follows that

$$
\begin{equation*}
\left|e_{n}(x)-d_{n}(x)\right| \leqslant O\left(n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\| \tag{3.6}
\end{equation*}
$$

and from the definition of $A_{n}^{+}(h, x)$ we get

$$
A_{n}^{+}(h, x)=A_{n}(h, x)-e_{n}(x)
$$

and

$$
\begin{aligned}
A_{n}^{+}(h, x)-h(x)= & A_{n}(h, x)-h(x)-h^{\prime}(x) x\left(\lambda_{n}-1\right) \\
& +h^{\prime}(x) x\left(\lambda_{n}-1\right)-e_{n}(x)+d_{n}(x)-d_{n}(x) \\
= & {\left[A_{n}(h, x)-h(x)-h^{\prime}(x) x\left(\lambda_{n}-1\right)\right] } \\
& -\left[e_{n}(x)-d_{n}(x)\right]+\left[h^{\prime}(x) x\left(\lambda_{n}-1\right)-d_{n}(x)\right] .
\end{aligned}
$$

From (3.3), (3.6), and condition (iii) we obtain

$$
\begin{align*}
\left|A_{n}^{+}(h, x)-h(x)\right| \leqslant & \left|A_{n}(h, x)-h(x)-h^{\prime}(x) x\left(\lambda_{n}-1\right)\right| \\
& +\left|e_{n}(x)-d_{n}(x)\right|+\left|h^{\prime}(x) x\left(\lambda_{n}-1\right)-d_{n}(x)\right| \\
\leqslant & \frac{1}{2} A_{n}\left((t-x)^{2}, x\right) \cdot\left\|h^{\prime \prime}| |+O\left(n^{-4}\right) \cdot\right\| h^{\prime \prime} \| \\
& +\left|h^{\prime}(x) x\left(\lambda_{n}-1\right)-d_{n}(x)\right| \\
= & O\left(\left(1-x^{2}\right) n^{-2}+n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\|+I_{n}(x), \tag{3.7}
\end{align*}
$$

where

$$
\begin{aligned}
I_{n}(x) & :=\left|h^{\prime}(x) x\left(\lambda_{n}-1\right)-d_{n}(x)\right| \\
& =\left|h^{\prime}(x) x\left(\lambda_{n}-1\right)-\frac{1}{2}(x+1) h^{\prime}(1)\left(\lambda_{n}-1\right)+\frac{1}{2}(1-x) h^{\prime}(-1)\left(\lambda_{n}-1\right)\right| \\
& =\left|\lambda_{n}-1\right| \cdot\left|h^{\prime}(x) x-\frac{1}{2}(x+1) h^{\prime}(1)+\frac{1}{2}(1-x) h^{\prime}(-1)\right|
\end{aligned}
$$

Since $x=\frac{1}{2}(x+1)-\frac{1}{2}(1-x)$, we can write

$$
\begin{aligned}
I_{n}(x) & =\left|1-\lambda_{n}\right| \cdot\left|\frac{1}{2}(x+1)\left[h^{\prime}(x)-h^{\prime}(1)\right]+\frac{1}{2}(1-x)\left[h^{\prime}(-1)-h^{\prime}(x)\right]\right| \\
& \leqslant\left|1-\hat{\lambda}_{n}\right| \cdot\left\{\frac{1}{2}(x+1)\left|h^{\prime}(x)-h^{\prime}(1)\right|+\frac{1}{2}(1-x)\left|h^{\prime}(-1)-h^{\prime}(x)\right|\right\} .
\end{aligned}
$$

Using the mean value theorem we have

$$
I_{n}(x) \leqslant\left|1-\hat{\lambda}_{n}\right| \cdot\left\{\frac{1}{2}(x+1)\left|h^{\prime \prime}(\theta)\right| \cdot|1-x|+\frac{1}{2}(1-x)\left|h^{\prime \prime}(\eta)\right| \cdot|x+1|\right\}
$$

where $-1<\theta<1$ and $-1<\eta<1$, hence

$$
\begin{aligned}
I_{n}(x) & \leqslant\left|1-\lambda_{n}\right| \cdot\left\{\frac{1}{2}\left(1-x^{2}\right)+\frac{1}{2}\left(1-x^{2}\right)\right\} \cdot\left\|h^{\prime \prime}\right\| \\
& =\left|1-\lambda_{n}\right| \cdot\left(1-x^{2}\right) \cdot\left\|h^{\prime \prime}\right\| .
\end{aligned}
$$

From condition (ii) we have

$$
\begin{equation*}
I_{n}(x) \leqslant c \cdot\left(1-x^{2}\right) \cdot n^{-2} \cdot\left\|h^{\prime \prime}\right\| \tag{3.8}
\end{equation*}
$$

and from (3.7) and (3.8) we derive that

$$
\begin{aligned}
\mid A_{n}^{+} & (h, x)-h(x) \mid \\
& \leqslant\left\{c \cdot\left(\left(1-x^{2}\right) \cdot n^{-2}+n^{-4}\right)+c \cdot\left(1-x^{2}\right) \cdot n^{-2}\right\} \cdot\left\|h^{\prime \prime}\right\| \\
& \leqslant c \cdot\left(\left(1-x^{2}\right) \cdot n^{-2}+n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\| .
\end{aligned}
$$

Remark 3.2. The inequality of Lemma 3.1 implies that $A_{n}^{+}=L \oplus A_{n}$ reproduces linear functions. This follows also from Theorem 2.1(iii).

4. Further Auxiliary Results

Lemma 4.1. Let $m(n) \in \mathbb{N}$ and $c \cdot n \leqslant m(n) \leqslant \tilde{c} \cdot n$. Furthermore, let $p_{m(n)} \in \Pi_{m(n)}$ and let ω be a modulus of continuity (i.e., $\omega(h) \rightarrow 0$ for $h \rightarrow 0$, ω is positive and increasing, and ω is subadditive). If

$$
\left|p_{m(n)}(x)\right| \leqslant \Delta_{n}(x) \cdot \omega\left(\Delta_{n}(x)\right), \quad|x| \leqslant 1
$$

then

$$
\left|p_{m(n)}^{\prime}(x)\right| \leqslant c \cdot \omega\left(\Delta_{n}(x)\right), \quad|x| \leqslant 1
$$

Proof. The proof is similar to that of Theorem 3 in [20, p. 71].
Lemma 4.2. If $n \geqslant 2$ and $h \in C^{2}[-1,1]$, then there exists a polynomial $\Lambda_{n}(h, \cdot) \in \Pi_{n}$ such that for $|x| \leqslant 1$ one has
(i) $\left|h(x)-\Lambda_{n}(h, x)\right| \leqslant c \cdot \Delta_{n}^{2}(x) \cdot\left\|h^{\prime \prime}\right\|$, and
(ii) $\left|h^{\prime}(x)-\Lambda_{n}^{\prime}(h, x)\right| \leqslant c \cdot A_{n}(x) \cdot\left\|h^{\prime \prime}\right\|$, where $A_{n}^{\prime}(h, x):=(d / d x)$ $\Lambda_{n}(h, x)$.

Proof. See Trigub [23, Lemma 1].

Lemma 4.3. Let $n \geqslant 2, m(n) \in \mathbb{N}$, and $c \cdot n \leqslant m(n) \leqslant \tilde{c} \cdot n$. Let A_{n} : $C[-1,1] \rightarrow \Pi_{m(n)}$ be a sequence of positive linear algebraic polynomial operators, satisfying conditions (i)-(iii) of Lemma 3.1. If $h \in C^{2}[-1,1]$, then

$$
\left|\frac{d}{d x} A_{n}^{+}(h, x)-h^{\prime}(x)\right| \leqslant c \cdot \Delta_{n}(x) \cdot\left\|h^{\prime \prime}\right\|, \quad|x| \leqslant 1
$$

Proof. Note that $\Delta_{n}^{2}(x)=\max \left\{\left(1-x^{2}\right) n^{-2}, n^{-4}\right\}$. Writing $W_{n}(h, x):=$ $A_{n}^{+}(h, x)$, we get from Lemma 3.1 that

$$
\begin{align*}
\left|W_{n}(h, x)-h(x)\right| & \leqslant c \cdot\left(\left(1-x^{2}\right) \cdot n^{-2}+n^{-4}\right) \cdot\left\|h^{\prime \prime}\right\| \tag{4.1}\\
& \leqslant c \cdot A_{n}^{2}(x) \cdot\left\|h^{\prime \prime}\right\| . \tag{4.2}
\end{align*}
$$

Since $n \geqslant 2$, with $\Lambda_{n}(h, \cdot)$ as in Lemma 4.2, we have for $|x| \leqslant 1$

$$
\begin{equation*}
\left|h(x)-\Lambda_{n}(h, x)\right| \leqslant c \cdot \Delta_{n}^{2}(x) \cdot\left\|h^{\prime \prime}\right\|, \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h^{\prime}(x)-\Lambda_{n}^{\prime}(h, x)\right| \leqslant c \cdot A_{n}(x) \cdot\left\|h^{\prime \prime}\right\| \tag{4.4}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left|W_{n}(h, x)-\Lambda_{n}(h, x)\right| & \leqslant\left|W_{n}(h, x)-h(x)\right|+\left|h(x)-\Lambda_{n}(h, x)\right| \\
& \leqslant c \cdot \Delta_{n}^{2}(x) \cdot\left\|h^{\prime \prime}\right\| . \tag{4.5}
\end{align*}
$$

The degree of $W_{n}(h, \cdot)-\Lambda_{n}(h, \cdot)$ is $m^{\prime}(n)=\max \{m(n), n\}$. Since $c \cdot n \leqslant$ $m(n) \leqslant \tilde{c} \cdot n$, the same is true for $m^{\prime}(n)$. Applying Lemma 4.1 (with $\omega(t)=c \cdot\left\|h^{\prime \prime}\right\| \cdot t$, where c is the constant from (4.5)) we arrive at

$$
\begin{equation*}
\left|W_{n}^{\prime}(h, x)-\Lambda_{n}^{\prime}(h, x)\right| \leqslant c \cdot \Delta_{n}(x) \cdot\left\|h^{\prime \prime}\right\| \tag{4.6}
\end{equation*}
$$

From (4.6) and (4.4) it follows that

$$
\left|W_{n}^{\prime}(h, x)-h^{\prime}(x)\right| \leqslant c \cdot \Delta_{n}(x) \cdot\left\|h^{\prime \prime}\right\|, \quad|x| \leqslant 1
$$

which yields the claim of Lemma 4.3 .

5. Gopengauz-Type Inequalities

This section contains the main result of our paper (Theorem 5.2). Its proof is obtained by the smoothing method which is described in the following

Lemma 5.1. Let $H_{n}: C[-1,1] \rightarrow C[-1,1]$ be a sequence of linear operators, satisfying the following conditions:
(i) $\left\|H_{n} f\right\| \leqslant c \cdot\|f\|$ for all $f \in C[-1,1]$.
(ii) There is a function $\varepsilon_{n}:[-1,1] \rightarrow[0,1]$ such that for all $g \in C^{2}[-1,1]$ there holds

$$
\left|H_{n}(g, x)-g(x)\right| \leqslant c \cdot \varepsilon_{n}^{2}(x) \cdot\left\|g^{\prime \prime}\right\|, \quad|x| \leqslant 1
$$

Then we have for all $f \in C[-1,1]$

$$
\left|H_{n}(f, x)-f(x)\right| \leqslant c \cdot \omega_{2}\left(f, \varepsilon_{n}(x)\right), \quad|x| \leqslant 1
$$

Proof. Lemma 5.1 is obtained by using the K-functional method (see, e.g., DeVore [9]).

Theorem 5.2. Let $n \geqslant 2, m(n) \in \mathbb{N}$, and $c \cdot n \leqslant m(n) \leqslant \tilde{c} \cdot n$. Furthermore, let $A_{n}: C[-1,1] \rightarrow \Pi_{m(n)}$ be a sequence of positive linear operators, satisfying conditions (i)-(iii) of Lemma 3.1. Then we have for all $f \in C[-1,1]$ and all $|x| \leqslant 1$ that

$$
\left|A_{n}^{+}(f, x)-f(x)\right| \leqslant c \cdot \omega_{2}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}\right)
$$

Proof. We have to show that for the operators A_{n}^{+}the conditions (i) and (ii) of Lemma 5.1 hold with $\varepsilon_{n}(x)=\sqrt{1-x^{2}} \cdot n^{-2}$.

We first show that (ii) is satisfied. To this end we define again $W_{n}(g, x):=A_{n}^{+}(g, x)$. For any $g \in C^{2}[-1,1]$ we know from (4.2) that

$$
\begin{equation*}
\left|g(x)-W_{n}(g, x)\right| \leqslant c \cdot A_{n}^{2}(x) \cdot\left\|g^{\prime \prime}\right\| \tag{5.1}
\end{equation*}
$$

Inequality (5.1) can be improved near the endpoints by using the fact that $W_{n}(g, \pm 1)=g(\pm 1)$. For example, in the case $0 \leqslant x \leqslant 1$ we arrive at

$$
\begin{align*}
\left|g(x)-W_{n}(g, x)\right| & \leqslant|x-1| \cdot\left|g^{\prime}(\xi)-W_{n}^{\prime}(g, \xi)\right| \\
& \leqslant c \cdot|x-1| \cdot \Delta_{n}(\xi) \cdot\left\|g^{\prime \prime}\right\| \\
& \leqslant c \cdot\left(1-x^{2}\right) \cdot \Delta_{n}(x) \cdot\left\|g^{\prime \prime}\right\| \tag{5.2}
\end{align*}
$$

where in the first inequality we used the mean value theorem with $x<\xi<1$, in the second inequality we employed Lemma 4.3 , and in the third inequality we made use of the fact that $1-x \leqslant 1-x^{2}$ for $0 \leqslant x \leqslant 1$ and $\Delta_{n}(\xi) \leqslant \Delta_{n}(x)$ (since $0 \leqslant x<\xi$). The same inequality as the one in (5.2) holds if $-1 \leqslant x \leqslant 0$. Hence we have

$$
\begin{equation*}
\left|g(x)-W_{n}(g, x)\right| \leqslant c \cdot\left(1-x^{2}\right) \cdot \Delta_{n}(x) \cdot\left\|g^{\prime \prime}\right\|, \quad|x| \leqslant 1 \tag{5.3}
\end{equation*}
$$

Using a standard argument, (5.1) and (5.3) imply

$$
\begin{equation*}
\left|g(x)-A_{n}^{+}(g, x)\right| \leqslant c \cdot\left(1-x^{2}\right) \cdot n^{-2} \cdot\left\|g^{\prime \prime}\right\|, \quad|x| \leqslant 1 \tag{5.4}
\end{equation*}
$$

To verify condition (i) of Lemma 5.1 , we note that the positivity of A_{n} implies for all $f \in C[-1,1]$ and $|x| \leqslant 1$ the inequality

$$
\left|A_{n}(f, x)\right| \leqslant\left|A_{n}(1, x)\right| \cdot\|f\|=\|f\| .
$$

Thus

$$
\begin{align*}
\left|A_{n}^{+}(f, x)\right| \leqslant & \left|A_{n}(f, x)\right|+\frac{1}{2}(x+1) \cdot\left[|f(1)|+\left|A_{n}(f, 1)\right|\right] \\
& +\frac{1}{2}(1-x) \cdot\left[|f(-1)|+\left|A_{n}(f,-1)\right|\right] \\
\leqslant & \|f\|+(x+1) \cdot\|f\|+(1-x) \cdot\|f\|=3\|f\| \tag{5.5}
\end{align*}
$$

and from (5.5) and (5.4), using Lemma 5.1, we obtain Theorem 5.2.
In the following we apply Theorem 5.2 to the operators $G_{m(n)}$.
Lemma 5.3. For $|x| \leqslant 1$ the following equality holds

$$
G_{m(n)}\left((t-x)^{2}, x\right)=\frac{1}{2}\left(1-\rho_{2, m(n)}\right)\left(1-x^{2}\right)+\left\{3 / 2-2 \rho_{1, m(n)}+\frac{1}{2} \rho_{2, m(n)}\right\} x^{2} .
$$

Proof. See Lehnhoff [18].
Theorem 5.4. Let $n \geqslant 2$ and $c \cdot n \leqslant m(n) \leqslant \tilde{c} \cdot n$. Furthermore, let $K_{m(n)}(v) \geqslant 0$ and
(i) $1-\rho_{1, m(n)}=O\left(n^{-2}\right)$,
(ii) $\frac{3}{2}-2 \rho_{1 . m(n)}+\frac{1}{2} \rho_{2 . m(n)}=O\left(n^{-4}\right)$.

Then for all $f \in C[-1,1]$

$$
\left|G_{m(n)}^{+}(f, x)-f(x)\right| \leqslant c \cdot \omega_{2}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}\right), \quad|x| \leqslant 1
$$

Proof. In [14] it was proved that

$$
G_{m(n)}(1, x)=1 \quad \text { and } \quad G_{m(n)}(t, x)=\rho_{1, m(n)} x
$$

Since $K_{m(n)}(v) \geqslant 0$ we have (see Cao and Gonska [5])

$$
0<1-\rho_{2, m(n)} \leqslant 4 \cdot\left(1-\rho_{1, m(n)}\right)=O\left(n^{-2}\right)
$$

From condition (ii) and Lemma 5.3 we obtain

$$
G_{m(n)}\left((t-x)^{2}, x\right)=O\left(\left(1-x^{2}\right) \cdot n^{-2}+n^{-4}\right)
$$

which, using Theorem 5.2, yields the claim of Theorem 5.4.

Theorem 5.5. Let $n \geqslant 2$ and $s \geqslant 3$. Then for $f \in C[-1,1]$ there holds

$$
\left|G_{s n-s}^{+}(f, x)-f(x)\right| \leqslant c \cdot \omega_{2}\left(f, \sqrt{1-x^{2}} \cdot n^{-1}\right), \quad|x| \leqslant 1
$$

Proof. First observe that $n \leqslant s n-s \leqslant s n(n \geqslant 2$ and $s \geqslant 2)$ and that $K_{s n-s}(v) \geqslant 0$. It was proved in [7] that

$$
1-\rho_{1, s n-s}=O\left(n^{-2}\right), \quad s \geqslant 2
$$

We also have (see Cao and Gonska [5])

$$
\frac{3}{2}-2 \rho_{1, s n-s}+\frac{1}{2} \rho_{2, s n-s}=O\left(n^{-4}\right), \quad s \geqslant 3 .
$$

Using Theorem 5.4 we obtain Theorem 5.5.
Remark 5.6. In view of Corollary 2.2(iii) all estimates given above also hold for the corresponding operators $G_{m(n)}^{1}$. Thus Theorem 5.5 proves the conjecture of Cao and Gonska [5] (containing the second author's conjecture from [14] for the special case $s=3$).

Acknowledgment

The authors thank the referee for a number of helpful remarks.

References

1. R. E. Barnhill and J. A. Gregory, Polynomial interpolation to boundary data on triangles, Math. Comp. 29 (1975), 726-735.
2. J.-D. CaO, On the degree of approximation of non-periodic continuous functions by linear operators, Fudan Xuebao 4 (1979), 61-68. [Chinese]
3. J.-D. Cao, Generalizations of Timan's theorem, Lehnhoff's theorem and Telyakowskii's theorem, Kexue Tongbao 15 (1986), 1132-1135. [Chinese]
4. J.-D. Cao, "Generalizations of Timan's Theorem, Lehnhoff's Theorem and Telyakowskii's Theorem," Schriftenreihe des Fachbereichs Mathematik SM-DU-106, Universität Duisburg, 1986.
5. J.-D. Cao and H. H. Gonska, Approximation by Boolean sums of positive linear operators, Rend. Mat. 6, No. 4 (1986), in press. [Italian]
6. R. Dahlhaus, Pointwise approximation by algebraic polynomials, manuscript, 1986.
7. R. A. DeVore, "The Approximation of Continuous Functions by Positive Linear Operators," Springer, Berlin/Heidelberg/New York, 1972.
8. R. A. DeVore, Pointwise approximation by polynomials and splines, in "The Theory of Approximation of Functions" (S. B. Stečkin and S. A. Telyakovskiĭ, Eds.), Proc. Int. Conf. Kaluga 1975, pp. 132-144, Nauka, Moscow, 1977.
9. R. A. DeVore, Degree of approximation, in "Approximation Theory II" (G. G. Lorentz et al., Eds.), Proc. Int. Symposium, Austin, Texas 1976, pp. 117-161, Academic Press, New York, 1976.
10. V. K. Dzjadyk, A further strengthening of Jackson's theorem on the approximation of continuous functions by ordinary polynomials, Dokl. Akad. Nauk SSSR 121 (1958), 403 406. [Russian]
11. G. Freud, Über die Approximation reeller stetiger Funktionen durch gewöhnliche Polynome, Math. Ann. 137 (1959), 17-25.
12. H. H. Gonska, On approximation by linear operators: Improved estimates, Anal. Numér. Théor. Approx. 14 (1985), 7-32.
13. H. H. Gonska, "Quantitative Approximation in $C(X)$," Habilitationsschrift, Universität Duisburg, 1985.
14. H. H. Gonska, "On Pičugov-Lehnhoff Operators," Schriftenreihe des Fachbereichs Mathematik SM-DU-86, Universität Duisburg, 1985.
15. H. H. Gonska, Modified Pičugov-Lehnhoff operators, in "Approximation Theory V" (C. K. Chui et al., Eds.), Proc. Int. Sympos. College Station, Texas 1986, pp. 355-358, Academic Press, New York, 1986.
16. H. H. Gonska and E. Hinnemann, Punktweise Abschätzungen zur Approximation durch algebraische Polynome, Acta Math. Hungar. 46 (1985), 243-254.
17. I. E. Gopengauz, A question concerning the approximation of functions on a segment and a region with corners, Teor. Funktsil̆ Funktsional. Anal. i. Prilozhen. 4 (1967), 204-210. [Russian]
18. H. G. Lehnhoff, A simple proof of A. F. Timan's theorem, J. Approx. Theory 38 (1983), 172-176.
19. H. G. Lehnhoff, A new proof of Teljakowskii's theorem, J. Approx. Theory $\mathbf{3 8}$ (1983), 177-181.
20. G. G. Lorentz, "Approximation of Functions," Chelsea, New York, 1986.
21. Y. Matsuoka, On the approximation of functions by some singular integrals, Tôhoku Math. J. 18 (1966), 13-43.
22. S. A. Picugov, Approximation of continuous functions on a segment by linear methods, Mat. Zametki 24, No. 3 (1978), 343-348. [Russian]
23. R. M. Trigub, The approximation of functions by polynomials with integer coefficients, Izv. Akad. Nauk SSSR 26 (1962), 261-280. [Russian]
24. X.-M. Yu, Pointwise estimate for algebraic polynomial approximation, Approx. Theory Appl. 1 (1985), 109-114.
